Current : ICNS 2018‎ > ‎Vol3 Issue1‎ > ‎

Vol3 Issue1 _1

posted Oct 23, 2018, 1:42 AM by Yaseen Raouf Mohammed   [ updated Mar 25, 2019, 12:40 AM ]
 Dana Khdr Sabir

 Department of Medical Laboratory Science, Charmo University, 46023 Chamchamal, Sulaimani, Kurdistan Region, Iraq

Acinetobacter baummannii is aerobic, Gram negative and multidrug resistant bacterium (MDR) which is the main cause of the hospital acquired infection.Using nanoparticle as antimicrobial agents is a promising method to overcome the threat of MDR bacteria, this is not only because the natural effective properties of these particles against the bacterial cells, but it is also unlikely that microorganisms gain resistant against nanoparticles. In this study, silver nanoparticles (Ag-NPs) and synergistic effect of Ag-NPs with different antibiotics were tested against A. baummannii strain H72721 in Tryptic Soy Broth (TSB). Minimum inhibitory concentration (MIC) of each of the ampicillin, kanamycin, gentamycin and clindamycin on the bacterium was 11 mg/ml, 2 mg/ml, 0.5 mg/ ml, and 0.3 mg/ml respectively. In addition, MIC of the Ag-NPs alone towards the bacterial strain was found as (0.75 mg ml- 1). Interestingly, the inhibitory property of each of the tested antibiotics were greatly improved when they were used in combination with Ag-NPs compare to when they were used alone, and in case of each of the ampicillin and clindamycin the bacterial growth reduced 3 folds. Results from this study are strongly suggesting that Ag-NPs could be provide a successful approach to overcome the problem of MDR bacteria and could use as a superficial treatment for A. baummannii’s infections.

multidrug resistance, minimuminhibitory concentration, silver nanoparticles

[1] Antibiotic resistance threats in the United States. 2013, Centers for Disease Control and Prevention.
[2] Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002-2004. MMWR Morb Mortal Wkly Rep, 2004. 53(45): p. 1063-6.
[3] Davis, K.A., et al., Multidrug-Resistant Acinetobacter Extremity Infections in Soldiers. Emerging Infectious Diseases, 2005. 11(8): p. 1218-1224.
[4] Howard, A., et al., Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence, 2012. 3(3): p. 243-50.
[5] Turton, J.F., et al., Comparison of Acinetobacter baumannii Isolates from the United Kingdom and the United States That Were Associated with Repatriated Casualties of the Iraq Conflict. Journal of Clinical Microbiology, 2006. 44(7): p. 2630-2634.
[6] Rice, L.B., Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis, 2006. 43 Suppl 2: p. S100-5.
[7] Alsan, M. and M. Klompas, Acinetobacter baumannii: An Emerging and Important Pathogen. Journal of clinical outcomes management : JCOM, 2010. 17(8): p. 363-369.
[8] Urban, C., S. Segal-Maurer, and J.J. Rahal, Considerations in Control and Treatment of Nosocomial Infections Due to Multidrug-Resistant Acinetobacter baumannii. Clinical Infectious Diseases, 2003. 36(10): p. 1268-1274.
[9] Harding, C.M., S.W. Hennon, and M.F. Feldman, Uncovering the mechanisms of Acinetobacter baumannii virulence. Nature Reviews Microbiology, 2018. 16(2): p. 91.
[10] WHO, Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: World Health Organization, 2017.
[11] Pal, S., Y.K. Tak, and J.M. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Applied and Environmental Microbiology, 2007.
73(6): p. 1712-1720.
[12] Stoimenov, P.K., et al., Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir, 2002. 18(17): p. 6679-6686.
[13] Li, P., et al., Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology, 2005. 16(9): p. 1912- 1917.
[14] Chudobova, D., et al., Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus. International Journal of Environmental Research and Public Health, 2014. 11(3): p. 3233-3255.
[15] Kohanski, M.A., D.J. Dwyer, and J.J. Collins, How antibiotics kill bacteria: from targets to networks. Nature reviews. Microbiology, 2010. 8(6): p. 423-435.
[16] Abdel Rahim, K.A. and A.M. Ali Mohamed, Bactericidal and Antibiotic Synergistic Effect of Nanosilver Against Methicillin-Resistant Staphylococcus aureus. Jundishapur J Microbiol, 2015. 8(11): p. e25867.
[17] Kim, S.-H., et al., Antibacterial activity of silver-
nanoparticles against Staphylococcus aureus
and Escherichia coli. Korean J. Microbiol. Biotechnol,
2011. 39(1): p. 77-85.
[18] Gao, M., et al., Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Materials Science and Engineering: C, 2013. 33(1): p. 397-404.
[19] McShan, D., et al., Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. Journal of Environmental Science and Health, Part C, 2015. 33(3): p. 369-384.

View All Artical