ICNS 2017‎ > ‎Research Papers‎ > ‎

Vol2 Paper 17

posted Aug 24, 2018, 7:18 AM by Yaseen Raouf Mohammed   [ updated Sep 4, 2018, 2:06 AM ]
 BAND STRUCTURE CALCULATIONS USING DENSITY FUNCTIONAL THEORY WITHIN LDA, GGA AND HSE06 FOR ZINC   TELLURIDE.


 Botan Jawdat Abdullah

 Department of Physics, College of Science.

 M S Omar

 Salahaddin-Erbil University, Erbil, Kurdistan Region, Iraq.

 ABSTRACT
The energy band structure and density of state (DOS) are calculated in the framework of the density functional theory (DFT) for a binary ZnTe compound, as implemented in the CASTEP code. The calculations are performed using the local density approximation (LDA), generalized gradient approximation (GGA), and hybrid functionals of Heyd-Scuseria- Ernzerh of (HSE06) approaches to compute the exchange-correlation energy. The DFT results within both LDA and GGA give lower band gap energies, whereas the HSE06 give a result of 2.385 eV for this compound as its experimental value is 2.39 eV. Thus, for DFT calculations, proper selection of exchange-correction (XC) functional is necessary to obtain reliable results that are compatible with experimental data.

 Keywords:
Energy Band Diagram; ZnTe; DFT; HSE06.



 REFERENCES
[1] Gunshor R and Nurmikko A [1997] “II-VI Blue/Green light emitters: device physics and epitaxial growth”, SEMICONDUCTORS AND SEMIMETALS. Aca demic press, San Diego, California, vol. 44
[2] Hakan Gürel H & Hilmi Ünlü [2013] “Density functional and tight binding theories of electronic properties of II–VI heterostructures” Materials Science in Semiconductor Processing, 16, p.1619–1628.
[3] Sakly A, Safta N, Mejri H [2011] “The electronic states calculated using the sinusoidal potential for Cd1−xZnxS quantum dot superlattices” Journal of Alloys and Compounds, 509. p. 2493–2495.
[4] Boutaiba F, Zaoui A, Ferhat M [2009] “Fundamental and transport properties of ZnX, CdX and HgX [X = S, Se, Te] compounds” Superlattices and Microstructures 4, p. 823–832. 189
[5] Zhao, Y. &Truhlar, D. G. [2009] “Calculation of semiconductor band gaps with the M06-L density functional” J. Chem. Phys. 130, p.074103 [1-3].
[6] Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V. &Scuseria, G. E. [2008] “Accurate solid-state band gaps via screened hybrid electronic structure calculations” J. Chem. Phys. 129, p.011102 [1-4].
[7] Joseph H. Simmons & Kelly S. Potter [2000] “Optical Materials”. Academic Press, p.191.
[8] H. P. Myers [1969] “Introductory Solid State Physics” London: Taylor & Francis, p.193.
[9] Hohenberg, P. & Kohn, W. [1964] “Inhomogeeous Electron Gas” Phys. Rev. 136, p.B864-B871.
[10] Kohn, W. & Sham, L. J. [1965] “Self-Consistent Equations Including Exchange Correlation Effects” Phy. Rev. 140, p.A1133-A1138.
[11] Herring, C. [1940] “A New Method for Calculating Wave Functions in Crystals” Phys, Rev. 57, p.1169-1177.
[12] Chadi, D. J. & Cohen, M. L. [1975] “Tight-Binding Calculations of the Valence Bands of Diamond and Zincblende Crystals” Phys. Stat. Sol. 68, p.405-419.
[13] Luttinger, J. M. & Kohn, W. [1955] “Motion of Electrons and Holes in Perturbed Periodic Fields” Phys. Rev. 97, p.869-883.
[14] Cohen, M. H. & Heine, V. [1961] “Cancellation of Kinetic and Potential Energy in Atoms, Molecules, and Solids” Phys. Rev. 122, p.1821-1826.
[15] Chelikowsky, J. R. & Cohen, M. L. [1976] “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors” Phys. Rev. B. 14, p.556-582.
[16] Langreth, D. C. &Perdew, J. P. [1980] “Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that work” Phys. Rev. B. 21, p.5469-5493.
[17] Heyd, J., Scuseria, G. E., &Ernzerhof, M. [2006] “Hybrid functionals based on a screened coulomb potential” J. Chem. Phys. 118, p.8207-8215.
[18] Marsman, M., Paier, J., Stroppa, A. &Kresse, G. [2008] “Hybrid functionals applied to extended systems” J. Phys.: Condens. Matter. 20, p.064201 [1-9].
[19] W. Kohn, A. D. Becke and R. G. Parr [1996] ‘’Density-functional theory of electronic structure’’ J. Phys. Chem., 100, p.12974.
[20] Monkhorst, H. J. & Pack, J. D. [1976] “Special points for Brillonin-zone integrations” Phys. Rev. B. 13, p.5188-5192.
[21] Su-Huai & Alex Zunger [1999] “Predicted band-gap pressure coefficients of all diamond and Zink-blend semiconductors: Chemical trends” Phys. Rev. B. 60, p.5404-5411.
[22] Adrian Kilal [2011] “Principles of Solar Cells, LED’s and Diodes” John Wily & Sons Ltd.

View All Artical



Comments